The Extended Malkus–Robbins Dynamo as a Perturbed Lorenz System

نویسندگان

  • IRENE M. MOROZ
  • I. M. Moroz
چکیده

Recent investigations of some self-exciting Faraday-disk homopolar dynamos [Hide, R. and Moroz, I. M., Physica D 134, 1999, 387–301; Moroz, I. M. and Hide, R., International Journal of Bifurcation and Chaos 2000, 2701–2716; Moroz, I. M., International Journal of Bifurcation and Chaos 13, 2003, 147–161; Moroz, I. M., International Journal of Bifurcation and Chaos, to appear] have yielded the classic Lorenz equations as a special limit when one of the principal bifurcation parameters is zero. In this paper we focus upon one of those models [Moroz, I. M., International Journal of Bifurcation and Chaos 13, 2003, 147–161] and illustrate what happens to some of the lowest order unstable periodic orbits as this parameter is increased from zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Malkus-robbins dynamo with a Linear Series Motor

In a recent paper Moroz [2003] considered a simplified version of third class self-exciting Faradaydisk dynamo model, introduced by Hide [1997], in the limit in which leads to the Malkus–Robbins dynamo [Malkus, 1972; Robbins, 1977] as a special case. In that study a linear series motor was incorporated which led to an enriching range of possible behavior that the original Malkus– Robbins dynamo...

متن کامل

An Efficient Computation Method for Hopf Bifurcation of High Dimensional Systems

Normal form theory is a powerful tool in the study of nonlinear systems, in particular, for complex dynamical behavior such as stability and bifurcations. However, it has not been widely used in practice due to the lack of efficient computation methods, especially for high dimensional engineering problems. The main difficulty in applying normal form theory is to determine the critical condition...

متن کامل

Multi-parameter identification from scalar time series generated by a Malkus-Lorenz water wheel.

We address the issue of multi-parameter estimation from scalar outputs of chaotic systems, using the dynamics of a Malkus water wheel and simulations of the corresponding Lorenz-equations model as an example. We discuss and compare two estimators: one is based on a globally convergent adaptive observer and the second is an extended Kalman filter (EKF). Both estimators can identify all three unk...

متن کامل

An Experiment of the Malkus-Lorenz Waterwheel and Its Measurement by Image Processing

We introduce a simple and efficient experimental setup for the Malkus–Lorenz waterwheel. Through a series of image processing techniques, our work is listed as one of the few experiments that measure not only the angular velocity but also the mass distribution. Our experiment is to observe qualitative changes on the waterwheel as the leakage rate changes, while the other physical parameters are...

متن کامل

Template analysis of a nonlinear dynamo

In this paper, we extend our previous template analysis of a self-exciting Faraday disc dynamo with a linear series motor to the case of a nonlinear series motor. This introduces two additional nonlinear symmetry-breaking terms into the governing dynamo equations. We investigate the consequences for the identification of a possible template on which the unstable periodic orbits (UPOs) lie. By c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004